Constrained Nonlinear Programming for Volatility Estimation with GARCH Models
نویسندگان
چکیده
This paper proposes a constrained nonlinear programming view of generalized autoregressive conditional heteroskedasticity (GARCH) volatility estimation models in financial econometrics. These models are usually presented to the reader as unconstrained optimization models with recursive terms in the literature, whereas they actually fall into the domain of nonconvex nonlinear programming. Our results demonstrate that constrained nonlinear programming is a worthwhile exercise for GARCH models, especially for the bivariate and trivariate cases, as they offer a significant improvement in the quality of the solution of the optimization problem over the diagonal VECH and the BEKK representations of the multivariate GARCH model.
منابع مشابه
Comparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کاملApplying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility
This paper studies volatility forecasting in the financial stock market. In general, stock market volatility is time-varying and exhibits clustering properties. Thus, this paper presents the results of using a fuzzy system method to analyze clustering in generalized autoregressive conditional heteroskedasticity (GARCH) models. It also uses the adaptive method of recursive least-squares (RLS) to...
متن کاملUsing Mixed Integer Nonlinearly Constrained Optimization to Do Penalized Maximum Likelihood Estimation for Garch and Arch Models
Compared to the traditional maximum likelihood regression approach, the penalized maximum likelihood estimation (PMLE) is a more rigorous method because of the adjustment for over fitting is directly built into the model development process, instead of relying on shrinkage afterwards. This paper illustrates the application of a nonlinear programming technique on PMLE to develop a prediction mod...
متن کاملمدلسازی و پیشبینی نوسانات بازار سهام با استفاده از مدل انتقالی گارچ مارکف
In this study we compare a set of Markov Regime-Switching GARCH models in terms of their ability to forecast the Tehran stock market volatility at different time intervals. SW-GARCH models have been used to avoid the excessive persistence that usually found in GARCH models. In SW-GARCH models all parameters are allowed to switch between a low or high volatility regimes. Both Gaussian and fat-...
متن کاملModeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 45 شماره
صفحات -
تاریخ انتشار 2003